Scalable Scheduling Architectures for High-Performance
Crossbar-Based Switches

Jing Liu, Mounir Hamdi, Qingsheng Hu and C. Y. Tsui
. Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
hamdi@cs. ust. hk

Abstract—This paper presents a novel scalable scheduling
architecture for high-performance crossbar-based
switches with virtual output queuing (VOQ) scheme. In
contrast to traditional switching architectures where the
scheduler is implemented by one single centralized
scheduling device, the proposed scheduling architecture
connects several small scheduling devices in series and the
arbitration algorithm is executed in parallel. Thereby the
inputs of -each single scheduling device establish
connections to a group of outputs, by considering both
their local transmission requests as well as global outputs
availability - information. The advantage of this
architecture lies in its ability to implement large
schedulers (> 64) with several small scheduling devices as
well as in its capability to achieve high-performance
scheduling. We first introduce a distributed parallel round
robin scheduling algorithm (DPRR) for the proposed
architecture. Through the analysis of simulation results on
various . admissible traffics, it is shown that the
performance” of DPRR is much better than the
performance of other round robin scheduling algorithms
commonly used on centralized schedulers. We also prove
that under Bernoulli i.i.d. uniform traffic, DPRR achieves
100% throughput. Moreover, we introduce a distributed
parallel round rebin scheduling algorithm with memory
(DPRRM) as an improved version of DPRR to make it
stable under any admissible traffic.

I. INTRODUCTION

Numerous studies show that the Internet traffic is growing at
rates of 100% to 150% every year. On the other hand, the
switches/routers’ capacity has doubled every 18 months. If
these growth treads (Internet traffic vs. switches/routers
capacity) are to continue unaltered for few years, this will
result in a big disparity between the capacity of individual
switches/routers and the Internet traffic volume. As a result,
there is a grewing need for closing this gap through the
deployment of scalable packet switches/routers,

There are three major switching architectures used: input
queued (IQ), combined input and output queued (CIOQ) and
output queued {OQ) switches. As port densities and line rates
increase, the IQ switch architectures are considered as a
pragmatic approach for implementing scalable switches and
routers. In IQ switches, virtual output queuing (VOQ) is
typically used to eliminate the Head of Line (HoL) blocking
[1}. With VOQ [2], each input link maintains a separate queue
for each output link, which stores incoming cells destined to
the corresponding output link. Then a scheduler determines

0-7803-8375-3/04/$20.00 © 2004 IEEE

how and when packets should be buffered, scheduled, and

. switched.

There have been various scheduling algorithms proposed
for 1Q switches in recent years, Maximum weight matching
(MWM) algorithms have very good performance under any
admissible traffic, for example, LQF, OCF and LPF [3][4].
However, they are too complex to be practical for high-
performance switches. Maximal size matching (MSM)
algorithms are practical to be implemented in hardware, such
as iSLIP [5] and FIRM [6]. They achive a good performance
under uniform traftic; however, their performance is degraded
at high loads when the traffic is bursty or non-uniform. In
contrast to deterministic algorithms, the recently proposed
randomized algorithms achieve a good performance in terms
of stability and require only linear computational complexity.
However their delay is high compared with MSM algorithms.
This is true even for non-uniform traffic as long as the
maximal size matching algorithms are operating in their
“stable” region [10]). The main reason for this is that the
randomized algorithms have been designed with the objective
of making them stable, rather than minimizing the average
delay,

The implicit assumption made by most researchers is that
these scheduling algerithms can fit within a single VLSI chip,
That might be feasible when the switch is of small size (<
64x64). On the other hand, for larger swiich sizes, that cannot
be done, Because of I/O-space-power limitations of silicon
devices, it is impossible to fit schedulers as simple as iSLIP on
a single chip when the switch size becomes large. Surprisingly,
there is no mention of this fact in the literature even though it
has a big effect on the architecture as wel! as the performance
of the scheduler. '

To solve this problem, we present a scalable scheduling
architecture that can implement a large scheduler using
smaller scheduling devices. We also propose an appropriate
scheduling algorithm called distributed parallel round robin
scheduling (DPRR) and an improved version of DPRR, which
is called distributed parallel round robin scheduling with
memory (DPRRM) for the new architecture.

This paper is organized as following: Section 2 introduces
background knowledge on various scheduling algorithms. In
Section 3, a sequential scheduling scheme is presented.
Section 4 discusses two pipeline scheduling schemes, one is
the simple pipeline scheduling, and the other is the distributed
parallel scheduling. In Section 5, the scheduling algorithm
DPRR and DPRRM are introduced. Section 6 presents the
simulation results and the performance analysis for our

104

scalable scheduling architecture and scheduling algorithms,
Finally, Section 7 conciudes the paper.

I1. BACKGROUND
A. Round robin scheduling algorithms

All existing round-robin scheduling algorithms are run with
several iterations, and each iteration consists of three steps:
request, grant and accept:

1. Each input sends requests to the outputs;

2. Each output selects one request independently
and sends a Grant to the corresponding input;

3. Each input selects one Grant to accept.

Round robin matching (RRM) [5] is the basic round robin
scheduling algorithm. RRM sends grant in the second step and
accept in the third step by round-robin policy. Each output
sends a grant to the request that appears next from the pointer
in a fixed round-robin order. Each input works in the same
way in selecting an output to issue accept. After selection, the
output pointer is incremented (modulo N) to one location
beyond the granted input. If no request is received, the pointer
stays unchanged. Input pointers execute the same operation.

RRM does not perform very well, since it suffers from
‘pointer synchronization’ problem, which means the grant
pointers of some outputs tend to peint to the same input.

iSLIP [5] achieves improvement in solving the pointer
synchronization problem by altering in the management of
peinters: at each output, the pointer remains unchanged unless
the corresponding grant is accepted. The minor change leads
to a significant increased throughput.

Fcfs in round robin matching {FIRM) [6] achieves more

fairness than iSLIP by moving the grant pointers to the
granted input instead of staying unchanged when the grant is
not accepted.

Based on the observation that the desynchronization of
pointers lead to good performance, recently, a group of new
round rebin scheduling algorithms—static round robin (SRR)
7] were proposed. The basic idea is to keep pointers fully
desynchronized. There are different variations of SRR Among
them, rotating double SRR (RDSRR) performs the best. In the
following we provide the specification of RDSRR:

Initialization. The output pointers are set to an initial
pattern such that there is no duplication among the pointers.
The same goes for the input pointers.

The three steps of one iteration are:

Step 1. Request. Each input sends a request to every output
for which it has a queued cell.

Step 2: Grant. If an output receives any requests, it chooses
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. To achieve fairness,
clockwise and counter-clockwise rotations are used alternately,
each for one time slot. The cutput notifies each input whether
or not its request was granted. The pointer pointing to the
highest priority element of the round robin schedule is always
incremented by one (modulo N) whether there is a grant or not,

Step 3: Accept. If an input receives a grant, it accepts the
one that appears next in a fixed, round-robin schedule starting

from the highest priority element. The pointer pointing to the
highest priority element of the round-robin schedule is always
incremented by one (modulo N) whether there is a grant or not.

The achievements with RDSRR are: {a) Lower delay (b)
With ¢lockwise and counter-clockwise rotation scheme, each
input has a chance to be served. (c) Easy to implement in
hardware.

B. Randomized algorithms

While deterministic scheduling algorithms are complex to
implement, randomized algorithms are quite simple and their
petformance is surprisingly good.

A basic randomized algorithm is proposed by Tassiulas [8].
Algol:

(a) Let (1} be the schedule used at time ¢,
(b) Attime ¢+ 1 choose a matching R(z + 1) uniformly at
random from the set of all N! possible matchings.

Let S(t + 1) = max <S,0(+1)> (O +1
(© Let S+ N=ag max =<SO+1)>(QF+1)

is the queue-lengths matrix at time # + 1.)

Lemma 1 (Tassiulas{8]) Algol is stable under any Bernoulli
i.i.d admissible input.

R(t + 1) is called a probe-matching. It is proved that if the
probe-matching can hit the MWM with a finite probability,
then the scheduling algorithm is stable under any admissible
traffic [10].

If arrival information is exploited in obtaining R(¢ + 1), the
performance of the algorithm can be improved significantly.
In [10], an arriving matching is generated to be the probe-
matching, First, an arrival graph A(7 + 1) is constructed in the
way that in case there is an arrival from an input to an output,
an edge is added between the two. The arrival graph is not
necessarily a matching, since multiple edges can be incident
on the same cutput node due to multiple arrivals to that output.
When A(t + 1) is not a matching, for all the output nodes
which have more than one edge incident on, choose cne edge
at random or with highest weight and discard the remaining
edges. At the end of this process, each output is matched with
exactly one input and the probe-matching with arrival
information R(t + 1) is obtained. The arrival process is
stationary and Bernoulli i.id.. Hence, there is a finite
probability that R(t + 1) is the MWM. Thus, the scheduling
algorithm which exploits arrival information in the probe-
matching is stable. We call this algorithm Algo 2.

Lemma 2 (Paolo[10]) Algoe2 is stable under any Bernoulli
i.id admissible input.

11 SCHEDULING ARCHITECTURE and
SEQUENTIAL SCHEDULING

In this section, a new scheduling architecture is proposed.
We consider a switch fabric with a large number of ports, for
example a 256x256 switch. Figure I shows the block diagram
of designing a 256x256 scheduler using eight 32x256
schedulers, The eight 32x256 schedulers are connected one by
one and the scheduling algorithms are run sequentially on
them to comfigure a 256x256 switch. Each 32x256 scheduler

105

Carral
Controfler

256 Available Output Ports
AOPG
Scheduler 0 Scheduling over
(32:4256) | Switching emablect
AOP1
| Scheduler 1 |_Scheduling over
(32256} | Switching enzbled
aCP2j

Scheduler 7 | Scheduling aver
(32:0%)

Figure 1. A 256x256 scalable scheduling architecture ising
. 8§ 32:256 scheduling devices.
has 32 inputs connected fo port precessors (PPs) and a total of
256 inputs of the § schedulers are linked to PPs, The Central
Controller is used to control the whole system.

A 256-bit contro! signal, which is called available output
port (AOP) is used in the proposed architecture. All output
poris have read and write access to the AOP, indicating the
reservation status of each of the.256 outputs. We denote a
logical “0° as an available output port while 1" is a previously
reserved one. In the beginning, the Central Controller sclects a
default single scheduler as a start node of the sequential
scheduling. Suppose Scheduler_0 is the selected one to be the
start node. It will receive the signal AOPO from the Centrat
Controller. Since no output has been reserved yet, the 256 bits
in AOPO are all logic ‘0’s. An appropriate scheduling
algorithm will be run on Scheduler_0 and consequently, part
of the 256 outputs will have connections with the inputs of
Scheduler_0.

The 1" celi time The 2™ cell time The 3" cell time The 4™ cefl time

Input ouipt Input Input outpurt Input

outpui

output

4 LAOF]

AQP2

o

& 28
{
. 3F tH
The 1" ¢hi The 2" chi The 3" chip The 4™ chip
P p

Figure 2. Example of sequential scheduling.

Cell time
1 4*
Scheduler 0 [1 2 [3[4]..
Scheduler 1] 2 E] 4
Scheduler_2 1 2 3 4 ke) ' '
Scheduler_3 T 23] 4] oo
Scheduler_4 1]2 31]+¢ H i i
Scheduler_5 1 M 3 4 '
Scheduler_é 112 4 3
Scheduler_7 1 3 1
) 1 [}
1} L]
1: the first round of scheduling :
2: the second round of scheduling
3., Switch engbled

Figure 3. A simple piveline scheduline,
The AOP will be updated according to the reservation status

of outputs and Scheduler 1 will receive the updated AOPI.
Meanwhile Scheduler_0 sends the signal of “Scheduling over”
to Central Controller to notify the completion of its
scheduling.

Thereafter, Scheduler 1 selects outputs from AOPl by
running the scheduling algorithm and updates AOP1 to AOP2
according to the reservation status. AOP2 is passed to
Scheduler_2 o continue the scheduling and a “Scheduling
over” signal is sent to the Central Controller again. All the
separate schedulers will continue this scheduling process
sequentially. When the Central Controller receives the signal
of “Scheduling over” from the last scheduler, Scheduler_7, it
will send a signal of “Switch enabled” back to all the single
scheduling devices to indicate the end of this round’s
scheduling and enable the transmission of cells from the PPs
to the crossbar.

Figure 2 gives a more detailed example. In this example we
use four 8x32 scheduling devices to arbitrate a 32x32 switch.

At the first cell time, atl the § inputs of the first device can
send their requests to all the 32 outputs and the appropriate
scheduling algorithm is run to select outputs. Further suppose,
output ports {0, 4, 14, 15, 16, 17, 18 and 29} are matched with
input 0 to input 7 respectively. Thus AOP1 is:

AOP1 =1{1,2,3,5,6,7,8,9,10,11, 12,13, 19, 20, 21, 22,
23,24, 25, 26, 27, 28, 30, 31} ’

At the second cell time, input 8 to input 15 send their
requests to those outputs in AOP1. After the scheduling of the
second device, another group of output ports will be reserved
and must be removed from AOP1, so the remaining AOP is:

AOP2=42,7,8,9,10,11, 12,13, 21, 23, 24, 25, 26, 27, 28,
303
Similarly, AOP3 = {2, 9, 10, 11, 13, 23, 25, 27}

When all the 4 scheduling devices finish the whole
scheduling, 32 inputs and outputs are matched completely.

IV. PARALLEL PIPELINE SCHEDULING
SCHEME

A. A simple pipeline scheduling

The sequential scheduling scheme reserves outputs for each
separate scheduler in turn, which requires several time slots to
carry out the scheduling and to reconfigure the crosspoints. A

106

pipeline scheme can be employed to reduce the delay
dramatically.

Figure 3 shows the simple pipeline scheduling scheme.
Each single scheduler can start the next round of scheduling
immediately as long as it completes its current scheduling and
receives the AOP signal from the last scheduler. One round of
scheduling consists of several steps of scheduling performed
by each of the single scheduling devices in turn, In Figure 3,
the number of 1, 2, 3, 4, ..., stands for the first round of
scheduling , the second round of scheduling, efc. When
Scheduler_0 completes the 1™ round of scheduling, it sends
AQP to Scheduler_1, then starts the 2™ round of scheduling.
As soon as Scheduler 1 receives the signal of AOP from
Scheduler 0, it starts the 1% round of scheduling, When
Scheduler_} completes the 1* round of scheduling based on
AOP, it can start the 2™ round of scheduling right after it
receives the AOP signal of 2" round scheduling from
Scheduler 0,

After the whole round of scheduling is completed, the
signal “Switch enable” will be issued from the Central
Controller to each PP indicating that this round of scheduling
is over and the switch is reconfigured. Each port transmits
cells to its designated output in accordance with the selected
configuration.

This pipeline scheduling scheme makes the scalable
scheduling more efficient. One round of scheduling can be
compieted at each cell time. The delay is significantly reduced
compared with sequential scheduling.

B. Distributed parallel scheduling

Obvicusly, this simple pipeline scheduling scheme cannot
guarantee the fairness of scheduling for each input. If the
highest priority is given to some fixed device (for example,
Scheduler 0 is the start node with the highest priority in
Figure 3), this simple pipeline paittern may result in an
unbalancing selection when the load is non-uniform.

To improve the performance of the basic scalable
scheduling architecture, we develop a fair scalable scheduling
architecture— distributed parailel scheduling architecture. In
this architecture, all single schedulers are connected in a round

Cell time

T 3 |
Scheduler 0 !||s|7!6|5]4[31211[3]7]6|5|4|3_[2
Scheduler_i 2]|Tsf7]e]5[413i2|||s]7f6]5|4|3
swesie | {STa]1 8] [6 [5[a] 32 [T 37 [e[5]7]
Scheduler_3 i4]3|2|][8!']|6]5 ia[z[l[s]ﬂelsf
seiis| GG REEL R
Shedulrs] | 6|5 [4|3f2] 87 6]sTa3]2]1[8]7¢k
scheduler 6| |76 [sTa]3]2] 18765 a]3]2]1]%]
seeduler 77 {8 |7[6]sT4]3]2[[8]7 e s[a[3]2]1

:‘\smml e

Figure 4, Distributed parallel scheduling,

1
1: the first round of scheduling
2: the second round of scheduling

way, i.e. the 1" device is connected to the 2™ device, the 2™
device connected to the 3™ device, etc. The last device
connected to the 1% device. Based on this circular connection,
a fair pipeline scheduling scheme is proposed. Figure 4 shows
the distributed parallel scheduling scheme. All single
scheduling devices work in parallel. However, they work in
different rounds of scheduling. For example, at the first cell
time, Scheduler_0, Scheduler 1, ... and Scheduler 7 starts
their 1%, 2™, 3%, ..., 8" round of scheduling respectively (see
Figure 4). Then, at the second cell time, Scheduler_0 receives
the signal AOP8 from Scheduler 7 and continues the
scheduling of 8™ round. Scheduler 1 receives signal AOP1
from Scheduer 0 and continues the work of the 1* round
scheduling, ..., in the same way, Scheduler_7 receives its
AOP information from Scheduler 6 and starts the 7" round of
scheduling.

At the following cell times, every single scheduler works in
a similar way. After eight cell times, each single scheduling
device has already completed eight rounds of scheduling, so in
each port processor there are up to 8 cells that have been
selected for transmission. All the configurations of different
scheduling rounds are stored in memory and as soon as the
port processors receive the message of “Switch Enable” from
the Central Controller, these scheduled cells wiil be
transmitted to the crossbar one configuration after another, For
example, all cells belonging to the 1* round of scheduling
from all PPs are transmitted first. Then the cells belonging to
the 2™ round are transmitted until the cells belonging to the 8%
round of scheduling are transmitted at the last cell time.

We can see that each single scheduler of the distributed
paralle] scheduling scheme has an equal chance of being the
start node with the highest priority in reserving outputs. Thus,
it is fair way of scheduling,

Y. SCHEDULING ALGORITHMS
A. DPRR scheduling algorithm
L Algorithm specification

After analyzing the scheduling architecture, we now
introduce scheduling algorithms run on each of the separate
schedulers. An approptiate scheduling algorithm is a key to
the performance. Since weight-based algorithms are too
complex to be practical, our proposed scheduling algorithm is

- based on round robin scheme. One scheduling device is an
.. MxN switching device, whereby M<N. Since the number of

inputs is less than the number of outputs, pointers of the

" output arbiters are quite easy to synchronize if we use typical
- iterative scheduling algerithms, such as iSLIP or FIRM. For

example, within FIRM, if the grant for the request is not

~ accepted by the input, the pointer of the output arbiter will
- stay at the granted one, Since M is less than N, in case the
. traffic load is high, one input will receive more than one grant

from different outputs with a large probability and the input

" can only accept one output; all the others will be synchronized.

In the simulation, we have seen that with iSLIP and FIRM, the
distributed architecture does not perform well.

Let us consider an 8x32 switching device. In our proposed
scheduling algorithm, we force the pointers of output arbiters
to keep balance in synchronization. Suppose a 4x16

107

Table 1. Pointer configuration of out|

puts for Scheduler 0 of 4x16 switching device.

O OOy | O[O0 [Os | O | O3] Os 1O | Q1o { Out | Oz | Ona | Ong | Ous

Pointers

intime [3] 2| 14{o13pz2|lt]ol3j2|1}ol3]2]1]o0

slot 1

Pointers

in time 0 3 2 1 0 3 2 1 0 3 2 I 0 3 2 1

slot 5
scheduling device, on average, every 4 pointers of the output Output 0 is the hot-spot with
arbiters point to the same input and the pointers of the input 2x x x x !ugher rate of traffic dgstmed to
arbiters are initially set to some patterns without any 2x x x x it, and all other traffic is
duplication. Every 4 (this equals the number of cell times for 2x x x % distributed to other outputs
one round scheduling) time slots, both the input pointers and Ix x x x uniformly.

output pointers increase by one (module 16). A possible
configuration for one of the 4x16 switching device, say
Scheduler_0 for inputs from 0 to 3 is shown in Table 1. We
also require that all the pointers of outputs that point to the
same inputs of Scheduler_C zlso point to the same inputs of
Scheduler_1, 2 and 3 as well. For example in Table 1, at time
slot 1, output 0, output 4, output 8 and output 12 point to the
same input: input 3 of Scheduler 0, so those outputs are
required to point to the same input of Scheduler_1, 2 and 3.
The reason of this requirement is to keep balance in pointer
synchronization. We call our proposed scheduling algorithm
distributed parallel round robin {(DPRR). 1t is based on the idea
of RDSRR, which is proved to perform well under most of the
traffic patterns. The three steps in one iteration of DPRR are
as following:

Step I: Request. Each input sends a request to every output
for which it has a queued cell.

Step 2. Grant. If an output receives any request, it chcoses
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. The output notifies
each input whether or not its request was granted. The search
is in clockwise and counter-clockwise rotation alternately,
each for one time siot.

Step 3: Accept. If an input receives grants, it accepts the one
that appears next in a fixed round-robin schedule staring from
the highest pricrity element.

Now we explain the design of DPRR. Both uniform traffic
and non-uniform traffic are considered.

The pointer setting and moving scheme favors Bernoulli
i.id. uniform traffic, since the pointers are kept balance in
synchronization and the traffic is also distributed uniformly
among all outputs. It is required that the pointers stay
unchanged for a continuous 4 time slots. The reason for that is
that one round of scheduling requires 4 time slots to complete;
thus 4 time slots is a period time to update pointers. This
feature.desires bursty traffic, since cells arrive within the same
burst might be served continuously so that the suffering of
delay from burstiness will be reduced.

As for the non-uniform traffics, two typical traffic patterns
are hotspot and diagonal. The hotspot traffic pattern assumes
one output to be the “hotspot”. The traffic load from all the
inputs to this “hotspot™ is much higher than to other outputs,
For example, for a 4x4 switch, the traffic matrix of hotspot
traffic is as following:

108

In our proposed scheduling architecture, since each of the
scheduling devices runs the scheduling algorithm and reserves
outputs in turn, if the “hotspot” fails to be reserved with
Scheduler 0, it will be continued to be scheduled with
Scheduler 1, and so on. The “hotspot” will have large
possibility to be served in one round of scheduling. Thus the
scalable scheduling architecture with reservation of outputs
decreases the waste of bandwidth,

Another typical non-uniform traffic pattern is diagonal
traffic. The traffic matrix is shown as following for a 4x4
switch:

x l-=x 0 O The traffic is concentrated on two
0 x 1-x 0| diagonals. One is heavier than the other.
0 0 x l=x| (x=2/3)

-x 0 0 «x

Consider output 0: the traffic only comes from input 0 and
input 3. The one-direction searching scheme of iSLIP and
FIRM will faver one input over the other. For example, when
the pointer is located at 1, 2, and 3, request from input 3 will
be granted. The only chance for the request from input 0 to be
granted is when the pointer moves to 0 or in case there is no
request from input 3. That causes unfairness. The two-
direction searching scheme that is conducted alternately for
both directions increases the fairness of scheduling.

2. Desynchronization effect of DPRR

Theorem 1. DPRR achieves 100% throughput under
admissible Bernoulli i.i.d. uniform traffic,

Proof. We assume that the offered load is 100% uniform
traffic, so that every VOQ is always occupied with cells, Let
us consider a 16x16 switch, which is composed of four 4x16
scheduling devices. Thus, the pointers of the output arbiters
are desynchrenized in such a way, that 4 outputs point to one
input of each 4x16 scheduling device and the scheduling are
processed in turn with each scheduling device. Assume
Scheduler_0 is the start node. Then each of the 4 inputs will
choose one output from four candidates and send accept.
When the scheduling moves to Scheduler_1, the AOP has 12
outputs and each input of Scheduler_1 has 3 outputs pointing
to it (recall that all the pointers of outputs that point to the
same inputs of Scheduler 0 also point to the same inputs of
Scheduler 1, 2 and 3. Thus the removed outputs from AQP
point to different inputs of Scheduler_1). Thus each input of
Scheduler 1 chooses one output from 3 candidates and send

“accept™. So does Scheduier 2, each input of which chooses
one output from 2 candidates and send “accept”. The inputs of
Scheduler 3 will send “accept” to the rest of the outputs.
Consequently each input will send cells to each output. Since
every 4 time slots, the peinters of all outputs will increase by
one (modulo 16), each input will keep sending cells to each

output indefinitely. The utilization of each output link is 100%.

Thus, DPRR achieves 100% throughput under uniform traffic.
B. DPRRM scheduling algorithm
1. Algorithm specification

Since the arrival process is stationary and Beroulli i.id.,
and also queue accumulation is dve to arrivals, thus to exploit
the arrival property is a good way to improve performance and
ensure stability. We modify DPRR to make it stable and as a
result the improved algorithm, distributed parallel round robin
scheduling with memory (DPRRM) is proposed. The the
specification of DPRRM is as follows.

Let S;., be the schedule used at the previous time slot and
A, is the matching obtained from arrival. To obtain 4,, first we
construct the arrival graph G,. If there is an arrival from input J
to output j, we add an edge from input i to output /. f G, is a
matching, then A4, = G,. If , is not a matching, which means
there are more than one arrival to one output, we choose the
heaviest edge and remove the others for this output to obtain a
matching 4, from G,,

max
Let 5, = arg Selg, v A D)} <8,0:>, where D, is the

matching obtained from DPRR and @, is the queue-lengths
matrix. In the first several time slots, there is no matching
obtained from DPRR, we set all the elements of D, to be 0’s.

2. Stability of the algorithm

Theorem 2. DPRRM is stable under any admissible Bernoutli
i.i.d. traffic.

Proof. In DPRRM, we use the matching A4, which is derived
from the arrival graph, as one of the probing matchings. The
arrival process is stationary and Bemoulli i.i.d.. Hence, there
is a finite probability & > 0 such that A4, is the MWM,
According to Lemma 2, this is sufficient to prove the stability
of DPRRM.

V1. ANALYSIS of SIMULATION RESULTS

In our simulation, we consider a 32x32 switch. In our
proposed parallel scheduling architecture, we use four
scheduling devices, each of which is a 8x32 switching device
connected with each other. The traffic is Bernoulli i.i.d. and
admissible (no input or output is overloaded). Uniform traffic,
uniform bursty traffic (with bursty length of 10 cells) and
various non-uniform traffic patterns, namely the diagona) and
hotspot cases are considered. The algorithms are executed
using one iteration.

Figure 5 shows the average delay performance of various
algorithms under uniform traffic. From this figure, we can see
that when the load is low, the delay of the proposed
scheduling architecture is nearly a constant value. That js

because when the scheduling starts, all the cells cannot be
transmitted until one round of scheduling is completed. That
results in an initial delay, which depends on the number of
scheduling devices used in the architecture. Practically, it is
close to # —1, where » is the number of scheduling devices
used. For DPRRM, since there are cells sent from the arrival
matching in the beginning, the delay is slightly lower than
DPRR when the load is low, When the load is above 0.6, our
proposed architecture with DPRR performs much better than
all the other algorithms. As we mentioned above, the pointer
moving schemes of iSLIP and FIRM are not suitable for our
proposed scheduling architecture. With DPRR, the pointers
synchronize in a balancing way and the reservation of outpuis
in turn by inputs reduces the waste of bandwidth, DPRRM has
comparable performance with DPRR,

Figure 6 shows the delay performance under uniform bursty
traffic. The result is similar to the case under uniform traffic.

Figure 7 shows the simulation results under hotspet traffic.
The delay of our proposed architecture is close to a constant in
all ranges. Only in the highest foad range, it increases slightly.
However it is still much lower than iSLIP, FIRM and RDSRR,
run on a single switch. The delay of iSLIP and FIRM run on
the proposed architecture is similar to that of DPRR and
DPRRM run on the proposed architecture, since our proposed
architecture with a large probability makes the“hotspot” be
served all the time, the architecture favors hotspot traffic.

32x32 wwitch undet uniform traffic

-8- ISLIP
—s— FIRM
16 -5 RDSRR

F —5— diatributed architecturs with ISLIP
—»— disiributed architecture with FIRM
—+— distributed architecture with DPRR
IO, L —o— distributed architacturs with DPRRM

* ¥

1o’ 7/9"

L] 02 a3 0.4 a5 06 0.7 08 2] 1
Normelized load

Figure 5. Average delay under uniform traffic,

3232 awitch undar unlforsn bursty traflc

8- iSLIP

—nu— FIRM

- RDSRR

—&— Disirbuted archiiecture with iSLIP
10° | —— Cistributed architecturs with FIRM
—i~ Distributed architacture with DPRR.
—&- Distributed architectura with DPRRM

a1 02 03 0.4 0.5 06 o7 [E:] 4.9 1
MNormalized load

Figure 6. Average delay under uniform bursty traffic.

109

Figure 8 shows the delay performance under diagonal
traffic. When the traffic is high, the delay performance of the
proposed architecture with DPRR is close to those algorithms
run on a single switch, even lower.

Let us consider one scheduling device for a 16x16 switch.
Suppose it is Scheduler_0 for inputs 0 to 3. Figure 9 shows the
requests sent by input 0 to 3 of Scheduler_0. From the figure,
we can see that output 0 will grant input 0 all the time, since
there is no request from input 15 will be sent to output 0 when
the scheduling is processed on Scheduler 0. Hence, even the
request from input 0 to output 1 is granted, it will always
compete for acceptance with grant from output 0 to input 0,
which makes the ceils in VOQ(0,1) accumulate heavily. So do
cells in VOQ(8,9), VOQ16,17) and VOQ(24,25}. That
influences the delay performance. However, DPRRM shows
much better performance. The delay of DPRRM increases
steadily when the load becomes high. From the figure, we can
also see that DPRRM shows a much better stability
performance than all the other algorithms do.

VI1. CONCLUSION

A scalable scheduling architecture is crucial for building
high-capacity switches, In this paper, we present a fair
scalable scheduling architecture, which employs a distributed
parallel pipeline scheduling scheme for input queued switches.
Using this scalable scheduling architecture, a large scheduler
can be implemented using several smaller single scheduling

32x32 swilch under hotspol traffic

-8~ iSLIP
—=— FiRM 1]
0 —+>~ RDSRR

&~ Distribuled architeclure with iSLIP
—¢— Distributed srchitecture with FIRM
10° —+— Distribuled architecture with DPRR
-~ Distribuied architécture wikth DP RRM

Average deday

0.05 o1 015 0.2 0.25 0.3 .35 0.4 0.45 0.5
. Nomalized lond

Figure 7. Average delay under hotspot traffic.

32x 32 switch under diagonal trafic

2 {SLP

—— FIRM

to’ -~ RDSRR

—o— Distribtned architecturs with ISLIF
—+— Distributed architecturs with FIRM
—+— Distributed architecture with DPRR
—& Distibuted srchiteciure with DPRRM

e 02 0.3 C.4 5] 0.8 ar 0.8 0.9 1
Nomalized load

Figure 8. Average delay under diagonal traffic.

) P b O

DO W N AN AW N O

[
NpWNEO

15

Figure 9. Requests of Scheduler_0 under diagonal traffic.

devices. We also propose a round robin scheduling algorithm
named DPRR and an improved version DPRRM for our
proposed scheduling architecture. Qur architecture employ the
reservation of outputs in turn scheme, which increases the
instant throughput and decreases the waste of bandwidth. The
pointer setting and moving scheme of DPRR reduces pointer
synchronization and thus reduces cell delay. The simulation
shows that our proposed architecture with DPRR has very
good performance when the traffic load is high under most of
the traffic pattemns and the delay at low load is close to a
constant value (= r—1) due to initial delay. DPRRM achieves a
good performance as well as DPRR while it is stable under
any admissible traffic. Thus under non-uniform traffic,
DPRRM shows a high performance.

REFERENCES

83 M. Karol, M. Hluchyj, and S. Morgan, “Input versus Quiput Queuing
ona Space Division Switch,” [EEE Trams, Communications, 35(12)
(1987) pp.1347-1356.

2] T. Anderson, 8. Owicki, J. Saxe, and C. Thacker, “High Speed
Switch Scheduling for Local Area Networks,” ACM Trans. Comput.
Syst., pp. 319-52, Nov. 1993

[3] A. Mekkittiku! and N. McKeown, “A Starvation-free Algorithm for
Achieving 100% Throughput in an Input-Queued Switch,” ICCCN
96, Oct. 1996, pp.226-231.

[4] A. Mekkittikul and N. McKeown, “A Practical Scheduling Algorithm
to Achieve 100% Throughpul in Input-GQueued Switches,” /EEE
INFOCOM 98, San Francisco, April, 1998, vol. 2, pp.792-799,

[5] N, McKeown, *iSLIP: A Scheduling Algorithm for Input-Queued
Switches,” [EEE Transactions on Networking, April 1999, Vol 7,
No.2.

[6] D. N. Serpanos and P. 1. Antoniadis, “FIRM: A Class of Distributed
Scheduling Algorithms for High-speed ATM Switches with Muitiple
Input Queues,” JEEE INFOCQOM, 2000,

ki Y. Jiang and M. Hamdi, “A Fully Desynchronized Round-Rebin
Matching Scheduler for 8 VO{) Packet Switch Architecture,” High
Performance Switching and Routing, 2001 IEEE Workshop on, pp.
407-411.

{8} L. Tassiulas, “Lincar Complexity Algorithms for Maximum
Throughput in Radio Networks and Input Queued Switches,” JEEE
INFOCOM 98, New York, 1993, vol. 2, pp.533-539.

[9] P. Giaccone, B. Prabhakar, and D. Shah, “Towards Simple, High-
performance Schedulers for High-aggregate Bandwidth Switches,”
IEEE INFOCOM, 2002.

{10] P. Giaccone, “Queucing and Scheduling Algorithms for High
Performance Routers,” PhD Thesis (149 pages/, Politecnico di Torino,
Italy, February 2002.

[I1] N. Mckeown, “Scheduling Algorithms for Input Queued Packet
Switches,” PhD Thesis, University of California ai Berkeley, May
1995. .

110

