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Abstracl-This paper presents a novel scalable scheduling 
architecture for high-performance crossbar-based 
switches with virtual output queuing (VOQ) scheme. In 
contrast to traditional switching architectures where the 
scheduler is implemented by one single centralized 
scheduling device, the proposed scheduling architecture 
connects several small scheduling devices in series and the 
arbitration algorithm is executed in parallel. Thereby the 
inputs of .each single scheduling device establish 
connections to a group of outputs, by considering both 
their local transmission requests as well as global outputs 
availability . information. T h e  advantage of this 
architecture lies in its ability to implement large 
schedulers (>‘64) with several small scheduling devices as 
well as in its capability to achieve high-performance 
scheduling. We first introduce a distributed parallel round 
robin scheduling algorithm (DPRR) for the proposed 
architecture. Through the analysis of simulation results on 
various .admissible traffics, it is shown that the 
performance’’ of DPRR is much better. than the 
performance of other round robin scheduling algorithms 
commonly used on centralized schedulers. We also prove 
that under Bernoulli i.i.d. uniform trallic, DPRR achieves 
100% throughput. Moreover, we introduce a distributed 
parallel round robin scheduling algorithm with memory 
(DPRRM) as an  improved version of DPRR to make it 
stable under any admissible traffic. 

I.  INTRODUCTION 

Numerous studies show that the Internet traffic is growing at 
rates of 100% to 150% every year. On the other hand, the 
switcheshouters’ capacity has doubled every I8  months. If 
these growth trends (Internet traffic vs. switcheshouters 
capacity) are to continue unaltered for few years, this will 
result in a big disparity between the capacity of individual 
switcheshouters and the Internet traffic volume. As a result, 
there is a growing need for closing this gap through the 
deployment of scalable packet switches/routers. 

There are three major switching architectures used: input 
queued (IQ), combined input and output queued (CIOQ) and 
output queued (OQ) switches. As port densities and iine rates 
increase, the IQ switch architectures are considered as a 
pragmatic approach for implementing scalable switches and 
routers. In IQ switches, virtual output queuing (VOQ) is 
typically used to eliminate the Head of Line (HoL) blocking 
[l]. With VOQ [Z], each input link maintains a separate queue 
for each output link, which stores incoming cells destined to 
the corresponding output link. Then a scheduler determines 

how and when packets should be buffered, scheduled, and 
switched. 

There have been various sc:heduling algorithms proposed 
for IQ switches in recent years. Maximum weight matching 
(MWM) algorithms have very good performance under any 
admissible traffic, for example, LQF, OCF and LPF [3][4]. 
However, they are too complex to be practical for high- 
performance switches. Maximal size matching (MSM) 
algorithms are practical to be implementi:d in hardware, such 
as S L I P  [SI and FIRM [6]. Th,ey achive a good performance 
under uniform traffic; however., their performance is degraded 
at high loads when the traffic is bursty or non-uniform. In 
contrast to deterministic algo:rithms, the recently proposed 
randomized algorithms achievr: a good performance in terms 
of stability and require only linear computational complexity. 
However their delay is high compared with MSM algorithms. 
This is true even for non-uniform traffic as long as the 
maximal size matching algorithms are operating in their 
‘‘stable’’ region [IO]. The main reason for this is that the 
randomized algorithms have been designed with the objective 
of making them stable, rather than minimizing the average 
delay. 

The implicit assumption made by most researchers is that 
these scheduling algorithms car1 fit within a single VLSI chip. 
That might be feasible when i:he switch is of small size (< 
64x64). On the other hand, for larger switch sizes, that cannot 
be done. Because of 110-space-power limitations of silicon 
devices, it is impossible to fit schedulers as simple as isLP on 
a single chip when the switch size becomes large. Surprisingly, 
there is no mention of this fact in the literature even though it 
has a big effect on the architecture as well as the performance 
of the scheduler. 

To solve this problem, we present a scalable scheduling 
architecture that can implement a large scheduler using 
smaller scheduling devices. We also propose an appropriate 
scheduling algorithm called distributed parallel round robin 
scheduling (DPRR) and an improved version of DPRR, which 
is called distributed parallel round robin scheduling with 
memory (DPRRM) for the new architecture. 

This paper is organized as following: :Section 2 introduces 
background knowledge on various scheduling algorithms. In 
Section 3, a sequential scheduling scheme is presented. 
Section 4 discusses two pipeline scheduling schemes, one is 
the simple pipeline scheduling, and the other is the distributed 
parallel scheduling. In Sectiori 5 ,  the scheduling algorithm 
DPRR and DPRRM are introduced. Section 6 presents the 
simulation results and the performance analysis for our 
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scalable scheduling architecture and scheduling algorithms. 
Finally, Section 7 concludes the paper. 

11. BACKGROUND 

A. Round robin sclieduling algorill~ms 

All existing round-robin scheduling algorithms are run with 
several iterations, and each iteration consists of three steps: 
request, grant and accept: 

1 .  Each input sends requests to the outputs; 
2. Each output selects one request independently 
and sends a Grant to the corresponding input; 
3. Each input selects one Grant to accept. 

Round robin matching (RRM) [5] is the basic round robin 
scheduling algorithm. RRM sends grant in the second step and 
accept in the third step by round-robin policy. Each output 
sends a grant to the request that appears next from the pointer 
in a fixed round-robin order. Each input works in’ the same 
way in selecting an output to issue accept. Afier selection, the 
output pointer is incremented (modulo N) to one location 
beyond the granted input. If no request is received, the pointer 
stays unchanged. Input pointers execute the same operation. 

RRM does not perform very well, since it suffers from 
‘pointer synchronization’ problem, which means the grant 
pointers of some outputs tend to point to the same input. 

BLIP [5] achieves improvement in solving the pointer 
synchronization problem by altering in the management of 
pointers: at each output, the pointer remains unchanged unless 
the corresponding grant is accepted. The minor change leads 
to a significant increased throughput. 

Fcfs in round robin matching (FIRM) [6] achieves more 
fairness than SLIP by moving the grant pointers to the 
granted input instead of staying unchanged when the grant is 
not accepted. 

Based on the observation that the desynchronization of 
pointers lead to good performance, recently, a group of new 
round robin scheduling algorithmwtatic round robin (SRR) 
[7] were proposed. The basic idea is to keep pointers fully 
desynchronized. There are different variations of SRR Among 
them, rotating double SRR (RDSRR) performs the best. In the 
following we provide the specification of RDSRR: 

Inilializalion. The output pointers are set to an initial 
panem such that there is no duplication among the pointers. 
The same goes for the input pointers. 

The three steps of one iteration are: 
Step I :  Request. Each input sends a request to every output 

for which it has a queued cell. 
Sfep 2: Grant If an output receives any requests;it chooses 

the one that appears next in a fixed, round-robin schedule 
starting from the highest priority element. To achieve fairness, 
clockwise and counter-clockwise rotations are used alternately, 
each for one time slot. The output notifies each input whether 
or not its request was granted. The pointer pointing to the 
highest priority element of the round robin schedule is always 
incremented by one (modulo N) whether there is a grant or not. 

Step 3: Accept. If an input receives a grant, it accepts the 
one that appears next in a fixed, round-robin schedule starting 

from the highest priority element. The pointer pointing to the 
highest priority element of the round-robin schedule is always 
incremented by one (modulo N) whether there is a grant or not. 

The achievements with RDSRR are: (a) Lower delay (b) 
With clockwise and counter-clockwise rotation scheme, each 
input has a chance to be served. (c) Easy to implement in 
hardware. 

B. Randomized algoriflims 

While deterministic scheduling algorithms are complex to 
implement, randomized algorithms are quite simple and their 
performance is surprisingly good. 

A basic randomized algorithm is proposed by Tassiulas [SI. 
Algol: 

(a) Let S(t) be the schedule used at time I .  
(b) At time I + 1 choose a matching R(t + I )  uniformly at 

random from the set of all N! possible matchings. 
(c) Let S(f  + 1) = arg max d,Q( r  +I)> (at + I )  

S~lS(!).R(f+l)l 

is the queue-lengths matrix at time f + 1 .) , 

Lemma 1 (Tassiulas[S]) Algol is stable under any Bernoulli 
i.i.d admissible input. 

R(t + 1) is called a probe-matching. It is proved that if the 
probe-matching can hit the MWM with a finite probability, 
then the scheduling algorithm is stable under any admissible 
traffic [IO]. 

If arrival information is exploited in obtaining R(f + I), the 
performance of the algorithm can be improved significantly. 
In [IO], an arriving matching is generated to be the probe- 
matching. First, an arrival graph A(f + 1) is constructed in the 
way that in case there is an arrival from an input to an output, 
an edge is added between the two. The arrival graph is not 
necessarily a matching, since multiple edges can be incident 
on the same output node due to multiple arrivals to that output. 
When A(t + 1 )  is not a matching, for all the output nodes 
which have more than one edge incident on, choose one edge 
at random or with highest weight and discard the remaining 
edges. At the end of this process, each output is matched with 
exactly one input and the probe-matching with arrival 
information R(f + I )  is obtained. W e  arrival process is 
stationay and Bernoulli i.i.d.. Hence, there is a finite 
probability that R(t + 1) is the MWM. Thus, the scheduling 
algorithm which exploits arrival information in the probe- 
matching is stable. We call this algorithm Algo 2. 
Lemma 2 (Paolo[IO]) Algo2 is srable under any Bernoulli 
i.i.d admissible input 

111. SCHEDULING ARCHITECTURE and 
SEQUENTIAL SCHEDULING 

In this section, a new scheduling architecture is proposed. 
We consider a switch fabric with a large number of ports, for 
example a 256x256 switch. Figure 1 shows the block diagram 
of designing a 256x256 scheduler using eight 32x256 
schedulers. The eight 32x256 schedulers are connected one by 
one and the scheduling algorithms are run sequentially on 
them to cornfigure a 256x256 switch. Each 32x256 scheduler 
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has 32 inputs connected to portprocessors (PPs) and a total of 
256 inputs of the 8 schedulers are linked to PPs. The Central 
Confroller is used to control the whole system. 

A 256-bit control signal, which is called available oufpuf 
porf (AOP) is used in the proposed architecture. All output 
ports have read and write access to the AOP, indicating the 
reservation status of each of the ,256 outputs. .We denote a 
logical '0' as an available output port while ' I '  is a previously 
reserved one. In the beginning, the Central Controller selects a 
default single scheduler.as a start node of the sequential 
scheduling. Suppose Scheduler-0 is the selected one to be the 
start node. It will receive the signal AOPO from the Central 
Controller. Since no output has been reserved yet, the 256 bits 
in AOPO are all logic '0's. An appropriate scheduling 
algorithm will be run on Scheduler-0 and consequently, part 
of the 256 outputs will have connections with the inputs of 
Scheduler-0. 

Thi  ,"Cd, , ;" ,e  The 2""rcl l  ,/me The 3 " c c l l  Limo The4"ccfLt;me 

1"PYL OY'PYL hP", *"IDY, o",p"l I"@", OYIpUI  , __ -  r e  j ;y .:: ,i' : 

Tho ,".hip Thc 2"'chip Thc3"ch iP  T h r  4" chip 

Flgurr 2. Exemplc  o f s r q u e n t i ~ l  schedul ing.  

Scheduler-0 
Scheduler_l 
Scheduler-2 
Scheduler-3 
Scheduler-4 
Schsduler_S 
Sahcduler_6 
Sshcdulsr_7 

Cell time 
,,J ... ... \** ... ,. 

I : the first round o f  scheduling t ,\ f /i 2: the second round ofscheduling 
3:  ... Switch enabled 

Fieure 3. A simole oiorlint: scheduline. 
The AOP will be updated according to the reservation status 

of outputs and Scheduler-1 will :receive ths updated AOPI. 
Meanwhile Scheduler-0 sends the signal of "Scheduling over" 
to Central Controller to notify the completion of its 
scheduling. 

Thereafter, Scheduler-l selects outputs from AOPl by 
running the scheduling algorithm and updates AOPl to AOP2 
according to the reservation st,atus. AOP2 is passed to 
Scheduler-2 to continue the scheduling and a "Scheduling 
over" signal is sent to the Central Controller again. All the 
separate schedulers will continue this scheduling process 
sequentially. When the Central Controller receives the signal 
of "Scheduling over" from the last scheduler, Scheduler-7, it 
will send a signal of "Switch enabled" back to all the single 
scheduling devices to indicate the end of this round's 
scheduling and enable the transmission of ci:lls from the PPs 
to the crossbar. 

Figure 2 gives a more detailed example. In this example we 
use four 8x32 scheduling devices to arbitrate a 32x32 switch. 

At the first cell time, all the 8 inputs of the first device can 
send their requests to all the 32 outputs and the appropriate 
scheduling algorithm is run to select outputs. Further suppose, 
output ports (0,4,  14, 15, 16, 17, 18 and 29) are matched with 
input 0 to input 7 respectively. Thus AOPl is:, 

AOPl = ( I ,  2, 3, 5.6, 7, 8, 9, IO, 11, 12, 13, 19, 20,21, 22, 
23.24, 25, 26,27,28,30, 31) 

At the second cell time, input 8 to input 15 send their 
requests to those outputs in AOPl . After the scheduling of the 
second device, another group of output ports will be resewed 
and must be removed from AOPI, so the rermaining AOP is: 

AOP2= (2,7,8,9,  IO, 11, 12, 13,21,23,:24,25,26,27,28, 
301 
Similarly, AOP3 = (2,9, 10, 11, 13,23,25,27) 

scheduling, 32 inputs and outputs are matched completely. 

IV. PARALLEL P1PE:LINE SCHEDULING 
SCHEME 

When all the 4 scheduling devices finish the whole 

A. A simple pipeline scheduling 

The sequential scheduling scheme reserves outputs for each 
separate scheduler in turn, which requires several time slots to 
cany out the scheduling and to retonfigure the crosspoints. A 
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pipeline scheme can be employed to reduce the delay 
dramatically. 

Figure 3 shows the simple pipeline scheduling scheme. 
Each single scheduler can start the next round of scheduling 
immediately as long as it completes its current scheduling and 
receives the AOP signal from the last scheduler. One round of 
scheduling consists of several steps of scheduling performed 
by each of the single scheduling devices in turn. In Figure 3, 
the number of I ,  2, 3, 4, ..., stands for the first round of 
scheduling , the second round of scheduling, efc.  When 
Scheduler-0 completes the 1%' round of scheduling, it sends 
AOP to Scheduler-I, then starts the 2"' round of scheduling. 
As soon as Scheduler-l receives the signal of AOP from 
Scheduler-0, it starts the 1'' round of scheduling. When 
Scheduler-l completes the 1%' round of scheduling based on 
AOP, it can start the 2"' round of scheduling right after it 
receives the AOP signal of 2"d round scheduling from 
Scheduler-0. 

After the whole round of scheduling is completed, the 
signal "Switch enable" will be issued from the Central 
Controller to each PP indicating that this round of scheduling 
is over and the switch is reconfigured. Each port transmits 
cells to its designated output in accordance with the selected 
configuration. 

This pipeline scheduling scheme makes the scalable 
scheduling more efficient. One round of scheduling can be 
completed at each cell time. The delay is significantly reduced 
compared with sequential scheduling. 

B. Disfribufed parallel scheduling 

Obviously, this simple pipeline scheduling scheme cannot 
guarantee the fairness of scheduling for each input. If the 
highest priority is given to some fixed device (for example, 
Scheduler-0 is the start node with the highest priority in 
Figure 3), this simple pipeline pattern may result in an 
unbalancing selection when the load is non-uniform. 

To improve the performance of the basic scalable 
scheduling architecture, we develop a fair scalable scheduling 
architecture- distributed parallel scheduling architecture. In 
this architecture, all single schedulers are connected in a round 
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way, i.e. the l*' device is connected to the 2"d device, the 2"' 
device connected to the 3" device, etc. The last device 
connected to the I" device. Based on this circular connection, 
a fair pipeline scheduling scheme is proposed. Figure 4 shows 
the distributed parallel scheduling scheme. All single 
scheduling devices work in parallel. However, they work in 
different rounds of scheduling. For example, at the first cell 
time, Scheduler-0, Scheduler-I, .. . and Scheduler-7 starts 
their l", 2"', 3", ..., 8h round of scheduling respectively (see 
Figure 4). Then, at the second cell time, Scheduler-0 receives 
the signal AOPX from Scheduler-7 and continues the 
scheduling of 8 I h  round. Scheduler-l receives signal AOPl 
from Scheduer-0 and continues the work of the 1" round 
scheduling, ..., in the same way, Scheduler-7 receives its 
AOP information from Scheduler-6 and starts the 7Ih round of 
scheduling. 

At the following cell times, every single scheduler works in 
a similar way. After eight cell times, each single scheduling 
device has already completed eight rounds of scheduling, so in 
each port processor there are up to 8 cells that have been 
selected for transmission. All the configurations of different 
scheduling rounds are stored in memory and as soon as the 
port processors receive the message of "Switch Enable" from 
the Central Controller, these scheduled cells will be 
transmitted to the crossbar one configuration after another. For 
example, all cells belonging to the 1" round of scheduling 
from all PPs are transmitted first. Then the cells belonging to 
the 2"d round are transmitted until the cells belonging to the XLh 
round of scheduling are transmitted at the last cell time. 

We can see that each single scheduler of the distributed 
parallel scheduling scheme has an equal chance of being the 
start node with the highest priority in reserving outputs. Thus, 
it is fair way of scheduling. 

V. SCHEDULING ALGORITHMS 

A. DPRR scheduling algorithm 

I .  Algorithm specification 

AAer analyzing the scheduling architecture, we now 
introduce scheduling algorithms run on each of the separate 
schedulers. An appropriate scheduling algorithm is a key to 
the performance. Since weight-based algorithms are too 
complex to be practical, our proposed scheduling algorithm is 

" '  based on round robin scheme. One scheduling device is an 
... MxN switching device, whereby M<N. Since the number of 

inputs is less than the number of outputs, pointers of the 
output arbiters are quite easy to synchronize if we use typical 

.'. iterative scheduling algorithms, such as S L I P  or FIRM. For 
example, within FIRM, if the grant for the request is not 
accepted by the input, the pointer of the output arbiter will 

' ' stay at the granted one. Since M is less than N ,  in case the 
... traffic load is high, one input will receive more than one grant 

from different outputs with a large probability and the input 
can only accept one outDut: all the others will be svnchronized. 

... 

... 

... 

In the shulaGon, we have seen that with BLIP anh FIRM, the 
distributed architecture does not perform well. 

I d a  first round'of schpduling 
2 Be wiond round of scliedulinc 

Let us consider an 8x32 switching device. In our proposed 
scheduling algorithm, we force the pointers of output arbiters 
to keep balance in synchronization. Suppose a 4x16 

Figure 4. Dirtribulcd parallel rehcduling. 
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scheduling device, on average, every 4 pointers of the output 
arbiters point to the same input and the pointers of the input 
arbiters are initially set to some patterns without any 
duplication. Every 4 (this equals the number of cell times for 
one round scheduling) time slots, both the input pointers and 
output pointers increase by one (module 16). A possible 

Out~iut 0 is the hot-spot with 
higher rate of tiaffic destined to 
it, arid all other traffic is 
distributed to other outputs 
uniformly. 

configuration for one of the 4x16 switching device, say 
Scheduler-0 for inputs from 0 to 3 is shown in Table 1. We 
also require that all the pointers of outputs that point to the 
same inputs of Scheduler-0 also point to the same inputs of 
Scheduler-I, 2 and 3 as well. For example in Table I ,  at time 
slot 1, output 0, output 4, output 8 and output 12 point to the 
same input: input 3 of Scheduler-0, so those outputs are 
required to point to the same input of Scheduler-I, 2 and 3. 
The reason of this requirement is to keep balance in pointer 
synchronization. We call our proposed scheduling algorithm 
distributed parallel round robin (DPRR). It is based on the idea 
of RDSRR, which is proved to perform well under most of the 
traffic patterns. The three steps in one iteration of DPRR are 
as following: 

Siep I: Request. Each input sends a request to ev,ery output 
for which it has a queued cell. 

Step 2: Grant. If an output receives any request, it chooses 
the one that appears next in a fixed, round-robin schedule 
starting from the highest priority element. The output notifies 
each input whether or not its request was granted. The search 
is in clockwise and counter-clockwise rotation alternately, 
each for one time slot. 

Slep 3: Accept. If an input receives grants, it accepts the one 
that appears next in a fixed round-robin schedule staring from 
the highest priority element. 

Now we explain the design of DPRR. Both uniform traffic 
and non-uniform traffic are considered. 

The pointer setting and moving scheme favors Bernoulli 
i.i.d. uniform traffic, since the pointers are kept balance in 
synchronization and the traffic is also distributed uniformly 
among all outputs. It is required that the pointers stay 
unchanged for a continuous 4 time slots. The reason for that is 
that one round of scheduling requires 4 time slots to complete; 
thus 4 time slots is a period time to update pointers. This 
feature.desires bursty traffic, since cells arrive within the same 
burst might be served continuously so that the suffering of 
delay from burstiness will be~reduced. 

As for the non-uniform traffics, two typical traffic patterns 
are hotspot and diagonal. The hotspot traffic pattern assumes 
one output to be the “hotspot”. The traffic load from all the 
inputs to this “hotspot” is much higher than to other outputs. 
For example, for a 4x4 switch, the traffic matrix of hotspot 
traffic is as following: 

In our proposed scheduling .architecture, since each of the 
scheduling devices runs the sch,:duling algorithm and reserves 
outputs in turn, if the “hotspot” fails to be reserved with 
Scheduler-0, it will be continued to be scheduled with 
Scheduler-I, and so on. The “hotspot” will have large 
possibility to be served in one round of scheduling. Thus the 
scalable scheduling architecture with rer;ervation of outputs 
decreases the waste of bandwidth. 

Another typical non-uniform traffic pattern is diagonal 
traffic. The traffic matrix is s:hown as following for a 4x4 
switch: 

The traffic is concentrated on two 
0 x I-x 0 diagonals. One is heavier than the other. 

x I-x (x=2/3) [: I-x ‘a 0 0 O x /I 
Consider output 0: the traffic only comes from input 0 and 

input 3. The one-direction seaxching scheme of SLIP and 
FIRM will favor one input over the other. For example, when 
the pointer is located at 1, 2, arid 3, request from input 3 will 
be granted. The only chance for the reque!;t from input 0 to be 
granted is when the pointer moves to 0 or in case there is no 
request from input 3. That (causes unfairness. The two- 
direction searching scheme that is conducted alternately for 
both directions increases the fairness of scheduling. 

2. Desynchronizotion effict of DPRR 

Theorem 1. DPRR achievcis 100% throughput under 
admissible Bernoulli i.i.d. unifoim traffic. 
Proof: We assume that the oifered load is 100% uniform 
traffic, so that every VOQ is always occupied with cells. Let 
us consider a 16x16 switch, which is composed of four 4x16 
scheduling devices. Thus, the pointers of the output arbiters 
are desynchronized in such a w,ay, that 4 outputs point to one 
input of each 4x16 scheduling ‘device and the scheduling are 
processed in turn with each scheduling device. Assume 
Scheduler-0 is the start node. Then each of the 4 inputs will 
choose one output from four candidate:; and send accept. 
When the scheduling moves to Scheduler..l, the AOP has 12 
outputs and each input of Scheduler-l ha!; 3 outputs pointing 
to it (recall that all the pointers of outpu.ts that point to the 
same inputs of Scheduler-0 also point to the same inputs of 
Scheduler 1. 2 and 3. Thus the removed outuuts from AOP 
point to dkerent inputs of Scheduler-I). This each input of 
Scheduler-l chooses one output from 3 candidates and send 
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"accept". So does Scheduler-2, each input of which chooses 
one output from 2 candidates and send "accept". The inputs of 
Scheduler-3 will send "accept" to the rest of the outputs. 
Consequently each input will send cells to each output. Since 
every 4 time slots, the pointers of all outputs will increase by 
one (modulo 16), each input will keep sending cells to each 
output indefinitely. The utilization of each output link is 100%. 
Thus, DPRR achieves 100% throughput under uniform traffic. 

B. DPRRM scheduling algorithm 

I .  Algorilhm specification 

Since the arrival process is stationary and Bernoulli i.i.d., 
and also queue accumulation is due to arrivals, thus to exploit 
the arrival property is a good way to improve performance and 
ensure stability. We modify DPRR to make it stable and as a 
result the improved algorithm, distributed parallel round robin 
scheduling with memory (DPRRM) is proposed. The the 
specification of DPRRM is as follows. 

Let S,. , be the schedule used at the previous time slot and 
A, is the matching obtained from arrival. To obtain A,, first we 
construct the arrival graph G,. If there is an arrival from input i 
to output j, we add an edge from input i to output j. If G, is a 
matching, then A, = G,. If G, is not a matching, which means 
there are more than one arrival to one output, we choose the 
heaviest edge and remove the others for this output to obtain a 
matching A,from G,. 

matching obtained from DPRR and (3, is the queue-lengths 
matrix. In the first several time slots, there is no matching 
obtained from DPRR, we set all the elements of D, to be 0's. 

2. Sfability of the algorillrm 

Theorem 2. DPRRM is stable under any admissible Bernoulli 
i.i.d. traffic. 
ProoJ In  DPRRM, we use the matching A,, which is derived 
from the arrival graph, as one of the probing matchings. The 
arrival process is stationary and Bernoulli i.i.d.. Hence, there 
is a finite probability 6 > 0 such that A, is the MWM. 
According to Lemma 2, this is sufficient to prove the stability 
of DPRRM. 

VI. ANALYSIS of SIMULATION RESULTS 

In  our simulation, we consider a 32x32 switch. In our 
proposed parallel scheduling architecture, we use four 
scheduling devices, each of which is a 8x32 switching device 
connected with each other. The traffic is Bernoulli i.i.d. and 
admissible (no input or output is overloaded). Uniform traffic, 
uniform bursty traffic (with bursty length of 10 cells) and 
various non-uniform traffic patterns, namely the diagonal and 
hotspot cases are considered. The algorithms are executed 
using one iteration. 

Figure 5 shows the average delay performance of various 
algorithms under uniform traffic. From this figure, we can see 
that when the load is low, the delay of the proposed 
scheduling architecture is nearly a constant value. That is 

because when the scheduling starts, all the cells cannot be 
transmitted until one round of scheduling is completed. That 
results in an initial delay, which depends on the number of 
scheduling devices used in the architecture. Practically, it is 
close to r - 1, where r is the number of scheduling devices 
used. For DPRRM, since there are cells sent from the arrival 
matching in the beginning, the delay is slightly lower than 
DPRR when the load is low. When the load is above 0.6, our 
proposed architecture with DPRR performs much better than 
all the other algorithms. As we mentioned above, the pointer 
moving schemes of BLIP and FIRM are not suitable for our 
proposed scheduling architecture. With DPRR, the pointers 
synchronize in a balancing way and the reservation of outputs 
in turn by inputs reduces the waste of bandwidth. DPRRM has 
comparable performance with DPRR. 

Figure 6 shows the delay performance under uniform bursty 
traffic. The result is similar to the case under uniform traffic. 

Figure 7 shows the simulation results under hotspot traffic. 
The delay of our proposed architecture is close to a constant in 
all ranges. Only in the highest load range, it increases slightly. 
However it is still much lower than ISLIP, FIRM and RDSRR, 
run on a single switch. The delay of SLIP and FIRM run on 
the proposed architecture is similar to that of DPRR and 
DPRRM run on the proposed architecture, since our proposed 
architecture with a large probability makes the"hotspot" be 
served all the time, the architecture favors hotspot traffic. 

11.12 r"",rh ""d" ""ism ,nmr 
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Figurt 5. Average delay under uniform rrrmc. 
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Figure 6. Average delay under uniform bursty lrafflc. 
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Figure 8 shows the delay performance under diagonal 
traffic. When the traffic is high, the delay performance of the 
proposed architecture with DPRR is close to those algorithms 
run on a single switch, even lower. 

Let us consider one scheduling device for a 16x16 switch. 
Suppose it is Scheduler-0 for inputs 0 to 3. Figure 9 shows the 
requests sent by input 0 to 3 of Scheduler-0. From the figure, 
we can see that output 0 will grant input 0 all the time, since 
there is no request from input 15 will be sent to output 0 when 
the scheduling is processed on Scheduler-0. Hence, even the 
request from input 0 to output 1 is granted, it will always 
compete for acceptance with grant from output 0 to input 0, 
which makes the cells in VOQ(0,l) accumulate heavily. So do 
cells in VOQ(8,9), VOQ(16,17) and VOQ(24,25). That 
influences the delay performance. However, DPRRM shows 
much better performance. The delay of DPRRM increases 
steadily when the load becomes high. From the figure, we can 
also see that DPRRM shows a much better stability 
performance than all the other algorithms do. 

VII. CONCLUSION 

A scalable scheduling architecture is crucial for building 
high-capacity switches. In this paper, we present a fair 
scalable scheduling architecture, which employs a distributed 
parallel pipeline scheduling scheme for input queued switches. 
Using this scalable scheduling architecture, a large scheduler 
can be implemented using several smaller single scheduling 

32x12 S M r h  ““6“ hol,FQ, 1RSC 
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Figure 9. Requests of Scheduler-0 under diagonal lrallic. 

devices. We also propose a round robin scheduling algorithm 
named DPRR and an improved version DPRRM for our 
proposed scheduling architecture. Our architecture employ the 
reservation of outputs in turn scheme, which increases the 
instant throughput and decreases the waste of bandwidth. The 
pointer setting and moving scheme of DPRR reduces pointer 
synchronization and thus reduces cell delay. The simulation 
shows that our proposed architecture with DPRR has very 
good performance when the trafic load is. high under most of 
the traffic patterns and the delay at low load is close to a 
constant value (= r-1) due to initial delay. DPRRM achieves a 
good performance as well as DPRR while it is stable under 
any admissible traffic. Thus under non-uniform traffic, 
DPRRM shows a high performance. 
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