
Scalable Scheduling Architectures for High-Performance
Cross bar-Based Switches

J i n g Liu, Moun i r Hamdi , Qingsheng Hu and C. Y. Tsui
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

hamdi(iiic.7 ust hk

Abstracl-This paper presents a novel scalable scheduling
architecture for high-performance crossbar-based
switches with virtual output queuing (VOQ) scheme. In
contrast to traditional switching architectures where the
scheduler is implemented by one single centralized
scheduling device, the proposed scheduling architecture
connects several small scheduling devices in series and the
arbitration algorithm is executed in parallel. Thereby the
inputs of .each single scheduling device establish
connections to a group of outputs, by considering both
their local transmission requests as well as global outputs
availability . information. T h e advantage of this
architecture lies in its ability to implement large
schedulers (>‘64) with several small scheduling devices as
well as in its capability to achieve high-performance
scheduling. We first introduce a distributed parallel round
robin scheduling algorithm (DPRR) for the proposed
architecture. Through the analysis of simulation results on
various .admissible traffics, it is shown that the
performance’’ of DPRR is much better. than the
performance of other round robin scheduling algorithms
commonly used on centralized schedulers. We also prove
that under Bernoulli i.i.d. uniform trallic, DPRR achieves
100% throughput. Moreover, we introduce a distributed
parallel round robin scheduling algorithm with memory
(DPRRM) as an improved version of DPRR to make it
stable under any admissible traffic.

I. INTRODUCTION

Numerous studies show that the Internet traffic is growing at
rates of 100% to 150% every year. On the other hand, the
switcheshouters’ capacity has doubled every I8 months. If
these growth trends (Internet traffic vs. switcheshouters
capacity) are to continue unaltered for few years, this will
result in a big disparity between the capacity of individual
switcheshouters and the Internet traffic volume. As a result,
there is a growing need for closing this gap through the
deployment of scalable packet switches/routers.

There are three major switching architectures used: input
queued (IQ), combined input and output queued (CIOQ) and
output queued (OQ) switches. As port densities and iine rates
increase, the IQ switch architectures are considered as a
pragmatic approach for implementing scalable switches and
routers. In IQ switches, virtual output queuing (VOQ) is
typically used to eliminate the Head of Line (HoL) blocking
[l]. With VOQ [Z], each input link maintains a separate queue
for each output link, which stores incoming cells destined to
the corresponding output link. Then a scheduler determines

how and when packets should be buffered, scheduled, and
switched.

There have been various sc:heduling algorithms proposed
for IQ switches in recent years. Maximum weight matching
(MWM) algorithms have very good performance under any
admissible traffic, for example, LQF, OCF and LPF [3][4].
However, they are too complex to be practical for high-
performance switches. Maximal size matching (MSM)
algorithms are practical to be implementi:d in hardware, such
as S L I P [SI and FIRM [6]. Th,ey achive a good performance
under uniform traffic; however., their performance is degraded
at high loads when the traffic is bursty or non-uniform. In
contrast to deterministic algo:rithms, the recently proposed
randomized algorithms achievr: a good performance in terms
of stability and require only linear computational complexity.
However their delay is high compared with MSM algorithms.
This is true even for non-uniform traffic as long as the
maximal size matching algorithms are operating in their
‘‘stable’’ region [IO]. The main reason for this is that the
randomized algorithms have been designed with the objective
of making them stable, rather than minimizing the average
delay.

The implicit assumption made by most researchers is that
these scheduling algorithms car1 fit within a single VLSI chip.
That might be feasible when i:he switch is of small size (<
64x64). On the other hand, for larger switch sizes, that cannot
be done. Because of 110-space-power limitations of silicon
devices, it is impossible to fit schedulers as simple as isLP on
a single chip when the switch size becomes large. Surprisingly,
there is no mention of this fact in the literature even though it
has a big effect on the architecture as well as the performance
of the scheduler.

To solve this problem, we present a scalable scheduling
architecture that can implement a large scheduler using
smaller scheduling devices. We also propose an appropriate
scheduling algorithm called distributed parallel round robin
scheduling (DPRR) and an improved version of DPRR, which
is called distributed parallel round robin scheduling with
memory (DPRRM) for the new architecture.

This paper is organized as following: :Section 2 introduces
background knowledge on various scheduling algorithms. In
Section 3, a sequential scheduling scheme is presented.
Section 4 discusses two pipeline scheduling schemes, one is
the simple pipeline scheduling, and the other is the distributed
parallel scheduling. In Sectiori 5 , the scheduling algorithm
DPRR and DPRRM are introduced. Section 6 presents the
simulation results and the performance analysis for our

0-7503-8375-3/01/$20.00 0 2004 IEEE 104

scalable scheduling architecture and scheduling algorithms.
Finally, Section 7 concludes the paper.

11. BACKGROUND

A. Round robin sclieduling algorill~ms

All existing round-robin scheduling algorithms are run with
several iterations, and each iteration consists of three steps:
request, grant and accept:

1 . Each input sends requests to the outputs;
2. Each output selects one request independently
and sends a Grant to the corresponding input;
3. Each input selects one Grant to accept.

Round robin matching (RRM) [5] is the basic round robin
scheduling algorithm. RRM sends grant in the second step and
accept in the third step by round-robin policy. Each output
sends a grant to the request that appears next from the pointer
in a fixed round-robin order. Each input works in’ the same
way in selecting an output to issue accept. Afier selection, the
output pointer is incremented (modulo N) to one location
beyond the granted input. If no request is received, the pointer
stays unchanged. Input pointers execute the same operation.

RRM does not perform very well, since it suffers from
‘pointer synchronization’ problem, which means the grant
pointers of some outputs tend to point to the same input.

BLIP [5] achieves improvement in solving the pointer
synchronization problem by altering in the management of
pointers: at each output, the pointer remains unchanged unless
the corresponding grant is accepted. The minor change leads
to a significant increased throughput.

Fcfs in round robin matching (FIRM) [6] achieves more
fairness than SLIP by moving the grant pointers to the
granted input instead of staying unchanged when the grant is
not accepted.

Based on the observation that the desynchronization of
pointers lead to good performance, recently, a group of new
round robin scheduling algorithmwtatic round robin (SRR)
[7] were proposed. The basic idea is to keep pointers fully
desynchronized. There are different variations of SRR Among
them, rotating double SRR (RDSRR) performs the best. In the
following we provide the specification of RDSRR:

Inilializalion. The output pointers are set to an initial
panem such that there is no duplication among the pointers.
The same goes for the input pointers.

The three steps of one iteration are:
Step I : Request. Each input sends a request to every output

for which it has a queued cell.
Sfep 2: Grant If an output receives any requests;it chooses

the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. To achieve fairness,
clockwise and counter-clockwise rotations are used alternately,
each for one time slot. The output notifies each input whether
or not its request was granted. The pointer pointing to the
highest priority element of the round robin schedule is always
incremented by one (modulo N) whether there is a grant or not.

Step 3: Accept. If an input receives a grant, it accepts the
one that appears next in a fixed, round-robin schedule starting

from the highest priority element. The pointer pointing to the
highest priority element of the round-robin schedule is always
incremented by one (modulo N) whether there is a grant or not.

The achievements with RDSRR are: (a) Lower delay (b)
With clockwise and counter-clockwise rotation scheme, each
input has a chance to be served. (c) Easy to implement in
hardware.

B. Randomized algoriflims

While deterministic scheduling algorithms are complex to
implement, randomized algorithms are quite simple and their
performance is surprisingly good.

A basic randomized algorithm is proposed by Tassiulas [SI.
Algol:

(a) Let S(t) be the schedule used at time I .
(b) At time I + 1 choose a matching R(t + I) uniformly at

random from the set of all N! possible matchings.
(c) Let S(f + 1) = arg max d,Q(r +I)> (at + I)

S~lS(!).R(f+l)l

is the queue-lengths matrix at time f + 1 .) ,

Lemma 1 (Tassiulas[S]) Algol is stable under any Bernoulli
i.i.d admissible input.

R(t + 1) is called a probe-matching. It is proved that if the
probe-matching can hit the MWM with a finite probability,
then the scheduling algorithm is stable under any admissible
traffic [IO].

If arrival information is exploited in obtaining R(f + I), the
performance of the algorithm can be improved significantly.
In [IO], an arriving matching is generated to be the probe-
matching. First, an arrival graph A(f + 1) is constructed in the
way that in case there is an arrival from an input to an output,
an edge is added between the two. The arrival graph is not
necessarily a matching, since multiple edges can be incident
on the same output node due to multiple arrivals to that output.
When A(t + 1) is not a matching, for all the output nodes
which have more than one edge incident on, choose one edge
at random or with highest weight and discard the remaining
edges. At the end of this process, each output is matched with
exactly one input and the probe-matching with arrival
information R(f + I) is obtained. W e arrival process is
stationay and Bernoulli i.i.d.. Hence, there is a finite
probability that R(t + 1) is the MWM. Thus, the scheduling
algorithm which exploits arrival information in the probe-
matching is stable. We call this algorithm Algo 2.
Lemma 2 (Paolo[IO]) Algo2 is srable under any Bernoulli
i.i.d admissible input

111. SCHEDULING ARCHITECTURE and
SEQUENTIAL SCHEDULING

In this section, a new scheduling architecture is proposed.
We consider a switch fabric with a large number of ports, for
example a 256x256 switch. Figure 1 shows the block diagram
of designing a 256x256 scheduler using eight 32x256
schedulers. The eight 32x256 schedulers are connected one by
one and the scheduling algorithms are run sequentially on
them to cornfigure a 256x256 switch. Each 32x256 scheduler

105

U ... I
U
F ~ I . ~ ~ ~ ~ k s ~ ~ ~ n g ~ ~ t ~ ~ i ~

SSLx?56sehadulingde\icer.

has 32 inputs connected to portprocessors (PPs) and a total of
256 inputs of the 8 schedulers are linked to PPs. The Central
Confroller is used to control the whole system.

A 256-bit control signal, which is called available oufpuf
porf (AOP) is used in the proposed architecture. All output
ports have read and write access to the AOP, indicating the
reservation status of each of the ,256 outputs. .We denote a
logical '0' as an available output port while ' I ' is a previously
reserved one. In the beginning, the Central Controller selects a
default single scheduler.as a start node of the sequential
scheduling. Suppose Scheduler-0 is the selected one to be the
start node. It will receive the signal AOPO from the Central
Controller. Since no output has been reserved yet, the 256 bits
in AOPO are all logic '0's. An appropriate scheduling
algorithm will be run on Scheduler-0 and consequently, part
of the 256 outputs will have connections with the inputs of
Scheduler-0.

Thi ,"Cd, , ;" ,e The 2""rcl l ,/me The 3 " c c l l Limo The4"ccfLt;me

1"PYL OY'PYL hP", *"IDY, o",p"l I"@", OYIpUI , __ - r e j ;y .:: ,i' :

Tho ,".hip Thc 2"'chip Thc3"ch iP T h r 4" chip

Flgurr 2. Exemplc o f s r q u e n t i ~ l schedul ing.

Scheduler-0
Scheduler_l
Scheduler-2
Scheduler-3
Scheduler-4
Schsduler_S
Sahcduler_6
Sshcdulsr_7

Cell time
,,J ** ... ,.

I : the first round o f scheduling t ,\ f /i 2: the second round ofscheduling
3: ... Switch enabled

Fieure 3. A simole oiorlint: scheduline.
The AOP will be updated according to the reservation status

of outputs and Scheduler-1 will :receive ths updated AOPI.
Meanwhile Scheduler-0 sends the signal of "Scheduling over"
to Central Controller to notify the completion of its
scheduling.

Thereafter, Scheduler-l selects outputs from AOPl by
running the scheduling algorithm and updates AOPl to AOP2
according to the reservation st,atus. AOP2 is passed to
Scheduler-2 to continue the scheduling and a "Scheduling
over" signal is sent to the Central Controller again. All the
separate schedulers will continue this scheduling process
sequentially. When the Central Controller receives the signal
of "Scheduling over" from the last scheduler, Scheduler-7, it
will send a signal of "Switch enabled" back to all the single
scheduling devices to indicate the end of this round's
scheduling and enable the transmission of ci:lls from the PPs
to the crossbar.

Figure 2 gives a more detailed example. In this example we
use four 8x32 scheduling devices to arbitrate a 32x32 switch.

At the first cell time, all the 8 inputs of the first device can
send their requests to all the 32 outputs and the appropriate
scheduling algorithm is run to select outputs. Further suppose,
output ports (0,4, 14, 15, 16, 17, 18 and 29) are matched with
input 0 to input 7 respectively. Thus AOPl is:,

AOPl = (I , 2, 3, 5.6, 7, 8, 9, IO, 11, 12, 13, 19, 20,21, 22,
23.24, 25, 26,27,28,30, 31)

At the second cell time, input 8 to input 15 send their
requests to those outputs in AOPl . After the scheduling of the
second device, another group of output ports will be resewed
and must be removed from AOPI, so the rermaining AOP is:

AOP2= (2,7,8,9, IO, 11, 12, 13,21,23,:24,25,26,27,28,
301
Similarly, AOP3 = (2,9, 10, 11, 13,23,25,27)

scheduling, 32 inputs and outputs are matched completely.

IV. PARALLEL P1PE:LINE SCHEDULING
SCHEME

When all the 4 scheduling devices finish the whole

A. A simple pipeline scheduling

The sequential scheduling scheme reserves outputs for each
separate scheduler in turn, which requires several time slots to
cany out the scheduling and to retonfigure the crosspoints. A

106

pipeline scheme can be employed to reduce the delay
dramatically.

Figure 3 shows the simple pipeline scheduling scheme.
Each single scheduler can start the next round of scheduling
immediately as long as it completes its current scheduling and
receives the AOP signal from the last scheduler. One round of
scheduling consists of several steps of scheduling performed
by each of the single scheduling devices in turn. In Figure 3,
the number of I , 2, 3, 4, ..., stands for the first round of
scheduling , the second round of scheduling, efc. When
Scheduler-0 completes the 1%' round of scheduling, it sends
AOP to Scheduler-I, then starts the 2"' round of scheduling.
As soon as Scheduler-l receives the signal of AOP from
Scheduler-0, it starts the 1'' round of scheduling. When
Scheduler-l completes the 1%' round of scheduling based on
AOP, it can start the 2"' round of scheduling right after it
receives the AOP signal of 2"d round scheduling from
Scheduler-0.

After the whole round of scheduling is completed, the
signal "Switch enable" will be issued from the Central
Controller to each PP indicating that this round of scheduling
is over and the switch is reconfigured. Each port transmits
cells to its designated output in accordance with the selected
configuration.

This pipeline scheduling scheme makes the scalable
scheduling more efficient. One round of scheduling can be
completed at each cell time. The delay is significantly reduced
compared with sequential scheduling.

B. Disfribufed parallel scheduling

Obviously, this simple pipeline scheduling scheme cannot
guarantee the fairness of scheduling for each input. If the
highest priority is given to some fixed device (for example,
Scheduler-0 is the start node with the highest priority in
Figure 3), this simple pipeline pattern may result in an
unbalancing selection when the load is non-uniform.

To improve the performance of the basic scalable
scheduling architecture, we develop a fair scalable scheduling
architecture- distributed parallel scheduling architecture. In
this architecture, all single schedulers are connected in a round

Cell 1,me

way, i.e. the l*' device is connected to the 2"d device, the 2"'
device connected to the 3" device, etc. The last device
connected to the I" device. Based on this circular connection,
a fair pipeline scheduling scheme is proposed. Figure 4 shows
the distributed parallel scheduling scheme. All single
scheduling devices work in parallel. However, they work in
different rounds of scheduling. For example, at the first cell
time, Scheduler-0, Scheduler-I, .. . and Scheduler-7 starts
their l", 2"', 3", ..., 8h round of scheduling respectively (see
Figure 4). Then, at the second cell time, Scheduler-0 receives
the signal AOPX from Scheduler-7 and continues the
scheduling of 8 I h round. Scheduler-l receives signal AOPl
from Scheduer-0 and continues the work of the 1" round
scheduling, ..., in the same way, Scheduler-7 receives its
AOP information from Scheduler-6 and starts the 7Ih round of
scheduling.

At the following cell times, every single scheduler works in
a similar way. After eight cell times, each single scheduling
device has already completed eight rounds of scheduling, so in
each port processor there are up to 8 cells that have been
selected for transmission. All the configurations of different
scheduling rounds are stored in memory and as soon as the
port processors receive the message of "Switch Enable" from
the Central Controller, these scheduled cells will be
transmitted to the crossbar one configuration after another. For
example, all cells belonging to the 1" round of scheduling
from all PPs are transmitted first. Then the cells belonging to
the 2"d round are transmitted until the cells belonging to the XLh
round of scheduling are transmitted at the last cell time.

We can see that each single scheduler of the distributed
parallel scheduling scheme has an equal chance of being the
start node with the highest priority in reserving outputs. Thus,
it is fair way of scheduling.

V. SCHEDULING ALGORITHMS

A. DPRR scheduling algorithm

I . Algorithm specification

AAer analyzing the scheduling architecture, we now
introduce scheduling algorithms run on each of the separate
schedulers. An appropriate scheduling algorithm is a key to
the performance. Since weight-based algorithms are too
complex to be practical, our proposed scheduling algorithm is

" ' based on round robin scheme. One scheduling device is an
... MxN switching device, whereby M<N. Since the number of

inputs is less than the number of outputs, pointers of the
output arbiters are quite easy to synchronize if we use typical

.'. iterative scheduling algorithms, such as S L I P or FIRM. For
example, within FIRM, if the grant for the request is not
accepted by the input, the pointer of the output arbiter will

' ' stay at the granted one. Since M is less than N , in case the
... traffic load is high, one input will receive more than one grant

from different outputs with a large probability and the input
can only accept one outDut: all the others will be svnchronized.

...

...

...

In the shulaGon, we have seen that with BLIP anh FIRM, the
distributed architecture does not perform well.

I d a first round'of schpduling
2 Be wiond round of scliedulinc

Let us consider an 8x32 switching device. In our proposed
scheduling algorithm, we force the pointers of output arbiters
to keep balance in synchronization. Suppose a 4x16

Figure 4. Dirtribulcd parallel rehcduling.

107

scheduling device, on average, every 4 pointers of the output
arbiters point to the same input and the pointers of the input
arbiters are initially set to some patterns without any
duplication. Every 4 (this equals the number of cell times for
one round scheduling) time slots, both the input pointers and
output pointers increase by one (module 16). A possible

Out~iut 0 is the hot-spot with
higher rate of tiaffic destined to
it, arid all other traffic is
distributed to other outputs
uniformly.

configuration for one of the 4x16 switching device, say
Scheduler-0 for inputs from 0 to 3 is shown in Table 1. We
also require that all the pointers of outputs that point to the
same inputs of Scheduler-0 also point to the same inputs of
Scheduler-I, 2 and 3 as well. For example in Table I , at time
slot 1, output 0, output 4, output 8 and output 12 point to the
same input: input 3 of Scheduler-0, so those outputs are
required to point to the same input of Scheduler-I, 2 and 3.
The reason of this requirement is to keep balance in pointer
synchronization. We call our proposed scheduling algorithm
distributed parallel round robin (DPRR). It is based on the idea
of RDSRR, which is proved to perform well under most of the
traffic patterns. The three steps in one iteration of DPRR are
as following:

Siep I: Request. Each input sends a request to ev,ery output
for which it has a queued cell.

Step 2: Grant. If an output receives any request, it chooses
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. The output notifies
each input whether or not its request was granted. The search
is in clockwise and counter-clockwise rotation alternately,
each for one time slot.

Slep 3: Accept. If an input receives grants, it accepts the one
that appears next in a fixed round-robin schedule staring from
the highest priority element.

Now we explain the design of DPRR. Both uniform traffic
and non-uniform traffic are considered.

The pointer setting and moving scheme favors Bernoulli
i.i.d. uniform traffic, since the pointers are kept balance in
synchronization and the traffic is also distributed uniformly
among all outputs. It is required that the pointers stay
unchanged for a continuous 4 time slots. The reason for that is
that one round of scheduling requires 4 time slots to complete;
thus 4 time slots is a period time to update pointers. This
feature.desires bursty traffic, since cells arrive within the same
burst might be served continuously so that the suffering of
delay from burstiness will be~reduced.

As for the non-uniform traffics, two typical traffic patterns
are hotspot and diagonal. The hotspot traffic pattern assumes
one output to be the “hotspot”. The traffic load from all the
inputs to this “hotspot” is much higher than to other outputs.
For example, for a 4x4 switch, the traffic matrix of hotspot
traffic is as following:

In our proposed scheduling .architecture, since each of the
scheduling devices runs the sch,:duling algorithm and reserves
outputs in turn, if the “hotspot” fails to be reserved with
Scheduler-0, it will be continued to be scheduled with
Scheduler-I, and so on. The “hotspot” will have large
possibility to be served in one round of scheduling. Thus the
scalable scheduling architecture with rer;ervation of outputs
decreases the waste of bandwidth.

Another typical non-uniform traffic pattern is diagonal
traffic. The traffic matrix is s:hown as following for a 4x4
switch:

The traffic is concentrated on two
0 x I-x 0 diagonals. One is heavier than the other.

x I-x (x=2/3) [: I-x ‘a 0 0 O x /I
Consider output 0: the traffic only comes from input 0 and

input 3. The one-direction seaxching scheme of SLIP and
FIRM will favor one input over the other. For example, when
the pointer is located at 1, 2, arid 3, request from input 3 will
be granted. The only chance for the reque!;t from input 0 to be
granted is when the pointer moves to 0 or in case there is no
request from input 3. That (causes unfairness. The two-
direction searching scheme that is conducted alternately for
both directions increases the fairness of scheduling.

2. Desynchronizotion effict of DPRR

Theorem 1. DPRR achievcis 100% throughput under
admissible Bernoulli i.i.d. unifoim traffic.
Proof: We assume that the oifered load is 100% uniform
traffic, so that every VOQ is always occupied with cells. Let
us consider a 16x16 switch, which is composed of four 4x16
scheduling devices. Thus, the pointers of the output arbiters
are desynchronized in such a w,ay, that 4 outputs point to one
input of each 4x16 scheduling ‘device and the scheduling are
processed in turn with each scheduling device. Assume
Scheduler-0 is the start node. Then each of the 4 inputs will
choose one output from four candidate:; and send accept.
When the scheduling moves to Scheduler..l, the AOP has 12
outputs and each input of Scheduler-l ha!; 3 outputs pointing
to it (recall that all the pointers of outpu.ts that point to the
same inputs of Scheduler-0 also point to the same inputs of
Scheduler 1. 2 and 3. Thus the removed outuuts from AOP
point to dkerent inputs of Scheduler-I). This each input of
Scheduler-l chooses one output from 3 candidates and send

108

"accept". So does Scheduler-2, each input of which chooses
one output from 2 candidates and send "accept". The inputs of
Scheduler-3 will send "accept" to the rest of the outputs.
Consequently each input will send cells to each output. Since
every 4 time slots, the pointers of all outputs will increase by
one (modulo 16), each input will keep sending cells to each
output indefinitely. The utilization of each output link is 100%.
Thus, DPRR achieves 100% throughput under uniform traffic.

B. DPRRM scheduling algorithm

I . Algorilhm specification

Since the arrival process is stationary and Bernoulli i.i.d.,
and also queue accumulation is due to arrivals, thus to exploit
the arrival property is a good way to improve performance and
ensure stability. We modify DPRR to make it stable and as a
result the improved algorithm, distributed parallel round robin
scheduling with memory (DPRRM) is proposed. The the
specification of DPRRM is as follows.

Let S,. , be the schedule used at the previous time slot and
A, is the matching obtained from arrival. To obtain A,, first we
construct the arrival graph G,. If there is an arrival from input i
to output j, we add an edge from input i to output j. If G, is a
matching, then A, = G,. If G, is not a matching, which means
there are more than one arrival to one output, we choose the
heaviest edge and remove the others for this output to obtain a
matching A,from G,.

matching obtained from DPRR and (3, is the queue-lengths
matrix. In the first several time slots, there is no matching
obtained from DPRR, we set all the elements of D, to be 0's.

2. Sfability of the algorillrm

Theorem 2. DPRRM is stable under any admissible Bernoulli
i.i.d. traffic.
ProoJ In DPRRM, we use the matching A,, which is derived
from the arrival graph, as one of the probing matchings. The
arrival process is stationary and Bernoulli i.i.d.. Hence, there
is a finite probability 6 > 0 such that A, is the MWM.
According to Lemma 2, this is sufficient to prove the stability
of DPRRM.

VI. ANALYSIS of SIMULATION RESULTS

In our simulation, we consider a 32x32 switch. In our
proposed parallel scheduling architecture, we use four
scheduling devices, each of which is a 8x32 switching device
connected with each other. The traffic is Bernoulli i.i.d. and
admissible (no input or output is overloaded). Uniform traffic,
uniform bursty traffic (with bursty length of 10 cells) and
various non-uniform traffic patterns, namely the diagonal and
hotspot cases are considered. The algorithms are executed
using one iteration.

Figure 5 shows the average delay performance of various
algorithms under uniform traffic. From this figure, we can see
that when the load is low, the delay of the proposed
scheduling architecture is nearly a constant value. That is

because when the scheduling starts, all the cells cannot be
transmitted until one round of scheduling is completed. That
results in an initial delay, which depends on the number of
scheduling devices used in the architecture. Practically, it is
close to r - 1, where r is the number of scheduling devices
used. For DPRRM, since there are cells sent from the arrival
matching in the beginning, the delay is slightly lower than
DPRR when the load is low. When the load is above 0.6, our
proposed architecture with DPRR performs much better than
all the other algorithms. As we mentioned above, the pointer
moving schemes of BLIP and FIRM are not suitable for our
proposed scheduling architecture. With DPRR, the pointers
synchronize in a balancing way and the reservation of outputs
in turn by inputs reduces the waste of bandwidth. DPRRM has
comparable performance with DPRR.

Figure 6 shows the delay performance under uniform bursty
traffic. The result is similar to the case under uniform traffic.

Figure 7 shows the simulation results under hotspot traffic.
The delay of our proposed architecture is close to a constant in
all ranges. Only in the highest load range, it increases slightly.
However it is still much lower than ISLIP, FIRM and RDSRR,
run on a single switch. The delay of SLIP and FIRM run on
the proposed architecture is similar to that of DPRR and
DPRRM run on the proposed architecture, since our proposed
architecture with a large probability makes the"hotspot" be
served all the time, the architecture favors hotspot traffic.

11.12 r"",rh ""d" ""ism ,nmr
11.. . . , , .

Nom.,ir.d l9.d

Figurt 5. Average delay under uniform rrrmc.

X" ' ' ' ' ' ' ,
0 1 0.2 0 3 0.1 0.5 0.1 1.7 1.8 0.9

Nom.lil.d l0.d

Figure 6. Average delay under uniform bursty lrafflc.

109

Figure 8 shows the delay performance under diagonal
traffic. When the traffic is high, the delay performance of the
proposed architecture with DPRR is close to those algorithms
run on a single switch, even lower.

Let us consider one scheduling device for a 16x16 switch.
Suppose it is Scheduler-0 for inputs 0 to 3. Figure 9 shows the
requests sent by input 0 to 3 of Scheduler-0. From the figure,
we can see that output 0 will grant input 0 all the time, since
there is no request from input 15 will be sent to output 0 when
the scheduling is processed on Scheduler-0. Hence, even the
request from input 0 to output 1 is granted, it will always
compete for acceptance with grant from output 0 to input 0,
which makes the cells in VOQ(0,l) accumulate heavily. So do
cells in VOQ(8,9), VOQ(16,17) and VOQ(24,25). That
influences the delay performance. However, DPRRM shows
much better performance. The delay of DPRRM increases
steadily when the load becomes high. From the figure, we can
also see that DPRRM shows a much better stability
performance than all the other algorithms do.

VII. CONCLUSION

A scalable scheduling architecture is crucial for building
high-capacity switches. In this paper, we present a fair
scalable scheduling architecture, which employs a distributed
parallel pipeline scheduling scheme for input queued switches.
Using this scalable scheduling architecture, a large scheduler
can be implemented using several smaller single scheduling

32x12 S M r h ““6“ hol,FQ, 1RSC

I ‘-7 id

1 1 i Id
i s ’ IJ

Figure 9. Requests of Scheduler-0 under diagonal lrallic.

devices. We also propose a round robin scheduling algorithm
named DPRR and an improved version DPRRM for our
proposed scheduling architecture. Our architecture employ the
reservation of outputs in turn scheme, which increases the
instant throughput and decreases the waste of bandwidth. The
pointer setting and moving scheme of DPRR reduces pointer
synchronization and thus reduces cell delay. The simulation
shows that our proposed architecture with DPRR has very
good performance when the trafic load is. high under most of
the traffic patterns and the delay at low load is close to a
constant value (= r-1) due to initial delay. DPRRM achieves a
good performance as well as DPRR while it is stable under
any admissible traffic. Thus under non-uniform traffic,
DPRRM shows a high performance.

REFERENCES
[I] M. Karol, M. Hluchyj. and S. h4organ. “Input versus Output Queuing

on a Space Division Switch,”lEEE Tmm. Communicorionr, 35(12)
(1987) pp. 1347-1 356.
T. Andenan. S. Owicki, J. Saxe, and C Thacker, “High Speed
Switch Scheduling for Local Area Networks,” ACM Trms. Compr.
Sysl., pp. 319-52,Nov. 1993.
A. Mekkinikul and N. MeKeom, “ A Starvation-free Algorithm for
Achieving 100% Throughput in an Input-Queued Switch,” ICCCN
‘96, Oct. 1996. pp.226-231

A. Mekkinikul and N. McKeove, “A Practical Scheduling Algorithm
to Achieve 100% Throughput in Input-Queued Switches,” IEEE
INFOCOM 98. San Francisco, April, 1998. b01. 2. pp.792-799.
N. McKeown, “ISLIP: A Scheduling Algiirithm for Input-Queued
Switcher,” IEEE Tmnroctiom on Neworkin& April 1999, Vol 7,
N o 2
D. N. Serpanos and P. 1. Antmiadis, “F1Wv.l: A Class of Diruibuted
Scheduling Algorithms far Highspeed ATM Switches with Multiple
Input Queues,” IEEE INFOCOIU, 2000.
Y. hang and M. Hamdi, “A Fully Desynchronized Round-Robin
Matching Scheduler for a VQQ Packet Switch Architecture,” High
Peformmce Swirching and Rouling, 2001 IEEE Workhop on, pp.
407-41 1

I d 181 L. Tarsidas, “Linear Complexity Algorithms for Maximum
Throughput in Radio Network and Input Queued Switches,” IEEE
INFOCOM’98, New York, 1998, vol. 2. pp.533-539.
P. Giaccane, B. Prabhakar. and D. Shah, “Towards Simple, High-
performance Schedulers for Highaggregate Bandwidth Switches,”
IEEE INFOCOM, 2002.

[I O] P. Giaccane, “Queueing and Schedulin,! Algorithms for High
Performance Routers,” PhD Thesis (149pger). Paliteenico di Torino,
Italy, February 2002.

0.7 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.0 I [Ill N. Mckeaun, “Scheduling Algorithms for Input Queued Packet
Switcher,” PhD Thesis, University of California at Berkeley, May
1995.

I21

[3]

141

,o= -.-.--- ~

151 0.05 0.l OII 0.1 0.25 0.1 0.35 0.4 0.5 0 5
Nomllizld load

‘ O . ’ Y i
Figure 7. Average delay under holrpot lrdlir.

I61

U I U S W l C h “nd.rdlgon.,,nL
I 0‘

171

ld .rchlf.rf“n*ilh ISUP

I
f 101

[9] i

N0rn.lil.d I0.d

Figure 8. Average delay under diagonal traWr.

110

